Turbulent Particle Transport in the Tokamak Edge Plasma & Its Implications

Dennis Whyte
University of Wisconsin-Madison

UW Plasma Seminar
Feb. 9, 2004

Collaborators
P. Stangeby (DIII-D), B. Lipschultz (MIT), S. Krasheninnikov (UCSD), J. Boedo (UCSD), D. Rudakov (UCSD), G. McKee (UW)
And many more from the DIII-D and Alcator C-Mod teams
Motivation

• Particle transport in edge plasmas of tokamaks is critical to success of fusion energy research (e.g. ITER)
 ➢ Particle control, particularly the radioactive & mobile Tritium fuel.
 ➢ Impurity control for burning plasmas.
 ➢ Erosion lifetimes for materials.

• Our record of understanding these subjects in present tokamaks?
 ➢ Global particle balance is usually not even measured, let alone understood.
 ➢ The density/ Greenwald limit remains an empirical observation.
 ➢ Tritium isotopes are retained at a 10-50% level, about 1,000-5000 times too large for a D-T reactor.
 ➢ The originating source & control of core plasma impurities is unknown.
 ➢ Net erosion rates of materials (rarely measured) are ~100 times too large.
Why such a poor record on particles in present experiments?

- Joules are expensive, particles are cheap!

Fig. 2-13 Negative ion neutral particle injector installed in the JT-60 hall
Why such a poor record on particles in present experiments?

- Joules are expensive, particles are cheap! *

* But NOT in a D-T fusion experiment/reactor:
 Tritium “costs” ~ $50M / kg & ~ 1 kg in-vessel safety limit.
It has long been recognized that “edge” particle transport is turbulent...

- > 30% n_e fluctuations.
- Approximately consistent with drift wave instability.
- “Anomalous” high diffusion coefficients inferred.

...so why has progress has been slow on understanding & controlling effects?

- Difficult 2-D or 3-D geometry of Scrape-Off Layer (SOL).
- Gradient scale lengths $\sim \Delta R_{\text{SOL}}$
- Complex, strong local sources (ionization) and sinks (walls, recombination).

- As a result, divertor design and operations have not taken turbulent transport into account:
 - e.g. ITER divertor is designed through combination of empirical “rules-of-thumb” and time-averaged fluid codes.
Goal of this work is to place edge turbulence in a broader context: Cross-field particle transport in the “far SOL” to the wall surfaces

• **Innovation**: Diagnostic techniques for “routine” measurement of local (turbulent) and global (time-averaged) particle flux to all surfaces in a divertor tokamak.

• **Leads to important constraints on interpretation of turbulence…**
 - Extrapolation of locally measured turbulent-driven flux.
 - Information on edge turbulent structures.
 - Variation with background plasma (collisionality, etc.)

• **& Implications**
 - Impurity sources.
 - Fueling control.
 - Erosion & Tritium retention.
 - Power balance
 - Density limits.
Outline

• Plasma flux to walls in DIII-D.
 ➢ The “window-pane” technique

• Intermittent, convective particle transport.
 ➢ Self-consistent diagnosis.

• Implications.
Outline

• Plasma flux to walls in DIII-D.
 ➢ The “window-pane” technique

• Intermittent, convective particle transport.
 ➢ Self-consistent diagnosis.

• Implications.
Measuring plasma flux to main-wall surfaces in a divertor tokamak: the “Window-pane”
Measuring plasma flux to main-wall surfaces in a divertor tokamak: the “Window-pane”

\[j_{\text{wall}} = \Gamma_\perp = 1.22(n_e c_s)_{\text{window-pane}} \cdot \lambda_{\text{shadow}} \frac{B_p}{B_t} \cdot \frac{1}{L_{\text{pol}}} \]

\[I_{\text{wall}} = j_{\text{wall}} \cdot \text{Area}_{\text{plasma}} = j_{\text{wall}} \cdot 2\pi R \cdot L_{\text{pol}} \]
LFS window-pane on DIII-D covers >60% of plasma area

Diagnostics

- I_{wall}: window-pane
- I_{div}: probe-array
- I_{rec}: $D-\gamma$
- D recycling: $D-\alpha$
- Fluctuations:
 - B.E.S.
 - $D-\alpha$ array
 - Scanning probe
Window-pane with realistic geometry and diagnostics

- Particles stepping through primary window-pane experience sudden decrease in connection length to surfaces and are no longer connected to divertor phenomena...they are lost to the “main-wall”.
- Secondary window-panes exist at each non axisymmetric surfaces.
Plasma flux to wall is directly confirmed with embedded probe

L-mode density scan
ΔR_{sep}: 70 mm

H-mode density scan
ΔR_{sep}: 50 mm

Measured $\Gamma_{i,\parallel}$ from embedded nose probe in main wall limiter (10^{23} s$^{-1}$m$^{-2}$)

Predicted $\Gamma_{i,\parallel}$ from shadow plasma (10^{23} s$^{-1}$m$^{-2}$)

#101559
#105194
Use density scans to examine flux behavior in edge

- Exploits $\Gamma \propto n_e^{2-3}$
- Constant power and energy confinement.
- $T_e \sim$ fixed by parallel heat conduction ($\propto q_{///}^{2/7}$).
- SOL density becomes increasingly flat.
- Shadow profiles:
 - $T_e \sim$5-10 eV
 - Clear break in n_e.

SOL <profiles>
(First) Global particle balance:
Surprisingly high plasma flux to main-wall.

- I_{div} rolls-over from detachment.
- I_{wall} increases strongly with $\langle n \rangle$.
- Shadow transport \sim constant.
- Main-wall and divertor particle sinks/sources \sim equal!
During H-Mode, ELMs send large plasma flux to main-wall

- ELM (Edge Localized Mode) MHD-event cause intermittent plasma bursts.
- Excellent correlation between main-wall flux & recycling in all confinement modes and during ELMs.
- Lack of profiles (λ_{shadow}) inhibits accurate I_{wall} with type-I ELM.
 - Window-frame probe array will provide routine $I_{\text{wall},\text{ELM}}$.
Density scan in high-δ H-Mode results nearly identical to L-mode

- Small rapid ELMs allow shadow plasma diagnosis.
Recycling & refueling in the main-chamber is controlled by I_{wall}, not divertor leakage.

Attempts to determine I_{wall} from main-wall recycling are highly uncertain.
Power balance validation of I_{wall}

Plasma flux to main-wall carries little energy

![Graph showing power balance validation]

- P_{NBI}
- P_{ohmic}
- P_{rad}
- Q_{wall}
- Q_{div}

Power (MW)

line averaged density (10^{19} m$^{-3}$)

Note:
- P_{rad}
- Q_{wall}
- Q_{div}
- $P_{rad} + Q_{wall} + Q_{div}$
Transport analysis of λ_{shadow} suggests convective ansatz with $v_{\text{eff}} \sim 100 \text{ m/s}$

Simple-SOL model

\[D_{\text{eff}} \approx \frac{2 \lambda_{\text{shadow}}^2 c_s}{L_{\parallel}} \]

\[v_{\text{eff}} \approx \frac{2 \lambda_{\text{shadow}} c_s}{L_{\parallel}} \]

<table>
<thead>
<tr>
<th>Case</th>
<th>L_{\parallel} m</th>
<th>λ_{shadow} mm</th>
<th>D_{eff} m2 s$^{-1}$</th>
<th>D_{Bohm} m2 s$^{-1}$</th>
<th>v_{eff} m s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Mode</td>
<td>14</td>
<td>30-40</td>
<td>3-6</td>
<td>0.2</td>
<td>110-140</td>
</tr>
<tr>
<td>H-Mode</td>
<td>20</td>
<td>40-60</td>
<td>4-9</td>
<td>0.2</td>
<td>100-150</td>
</tr>
</tbody>
</table>

Table 1 Summary of transport analysis based on λ_{shadow}.
Outline

• Plasma flux to walls in DIII-D.
 ➢ The “window-pane” technique

• Intermittent, convective particle transport.
 ➢ Self-consistent diagnosis.

• Implications.
We will examine how “turbulent” convective plasma transport to wall is linked to ExB propagation of plasma filaments.

- High density & pressure plasma filament or “blob” is born at the separatrix.
 - First experimentally identified by Endler & Zweben (late 80’s).

- The filament propagates radially to the outer wall due to ∇B plasma polarization and associated $E_\theta \times B$ drift.

- Model by Krasheninnikov relies on sheath resistivity at divertor plate to close current paths in filament.

$S. \text{ Krasheninnikov}$

BES movie shows an example of a single filament propagating through the SOL

- B.E.S. (beam emission spectroscopy) measures local n_e fluctuation level.

- Unfortunately, DIII-D BES rarely setup for far SOL studies.
Midplane D-α array:

Density spikes associated w/ filaments originate at separatrix & propagate across entire SOL

- Tangentially views SOL with 1 cm spatial resolution -- *routine diagnostic*.

- Frequency regime:
 - 100 kHz sampling rate.
 - 50 Hz - 20 kHz noise floor.

- Conditional averaging: picks out and “tracks” single-event, large amplitude fluctuations through SOL.

- Intrinsic SOL D-α emission is best described as a measurement of ionization...f (T_e, n_e, n_D)
 - But origin at separatrix (T_e > 50 eV) rules out T_e fluctuation as cause.
 - Neutrals too fast.
 - Best described as n_e fluctuations.
Key observations

- Net outward radial propagation.
- \(\Delta r \sim 20-30\) mm.
- Point of origin: separatrix.
- Filaments remain coherent propagating across SOL & must be greatly extended in parallel direction: \(L_{//} > 5\) m \(\sim M c_s \tan \theta \tau_{\text{SOL}}\)
- Filaments reaching the window-pane: \(v_{\text{poloidal}} < v_{\text{radial}}\)
Ensemble-average D-α fluctuations show radially outward propagation at ~ 100 m/s

Time-lag Correlation Over ~ 1 second

$v_r = 100 \text{ m/s}$

$n_e \sim 0.45 \, n_{Gr}$
Our detailed filament information allows us to calculate turbulent particle flux density in SOL

Filament flux density

\[
\sum_{N_y} \# = n_{fil} \, v_{radial} \, \Delta t \, \Delta y \, \Delta z \cdot N_y
\]

\[
\Gamma_{radial} = \frac{\sum_{N_y} \#}{\Delta t \cdot \text{Area}} = \frac{\sum_{N_y} \#}{\Delta t \cdot Y \cdot \Delta z} = n_{fil} \, v_{radial} \left(\frac{\Delta y \, N_y}{Y} \right)
\]

\[
\delta n = n_{fil} \left(\frac{\Delta y \, N_y}{Y} \right)
\]

\[
\Gamma_{radial} = \delta n \, v_{radial} = \left(\frac{\delta n}{n} \right) n \, v_{radial}
\]
SOL fluctuations & correlation are measured independently.

SOL <profiles>

SOL Fluctuations
SOL fluctuations & correlation are measured independently.

- Norm. fluctuation level increases through SOL
- Norm. fluctuation independent of core density.
- TS shows peak $\delta n - \delta Te$ at separatrix, consistent with filaments radial origin, but poloidally far from midplane.
Remarkably consistent $v_{\text{eff}}(r)$ profiles → Increasing radial flux with increasing n_e,SOL

\[\Gamma_{\text{radial}} = \delta n \; v_{\text{radial}} = \left(\frac{\delta n}{n} \right) n \; v_{\text{radial}} \]

(a) Ensemble averaging

(b) Conditional averaging

(c) Cross-field Convective Flux density
Filament transport through window-pane explains >50% of the magnitude and matches trend of plasma flux to the main-wall.

- Filament transport consistent with ExB propagation:
 - Probe measures $E_{\text{poloidal}} \times B$ fluctuation flux at window-pane.

- For the first time we have linked turbulent-driven edge particle flux to a “global” parameter.
Outline

• Plasma flux to walls in DIII-D.
 ➢ The “window-pane” technique

• Intermittent, convective particle transport.
 ➢ Self-consistent diagnosis.

• Implications.
The far SOL transport is resilient: \(v_{\text{eff}} \sim 100 \text{ m/s} \) invariant with density/collisionality or energy confinement!

- Supported by multiple diagnostics on DIII-D:
 - \(\lambda_{\text{shadow}} \text{ analysis: } v_{\text{eff}} \sim 100-150 \text{ m/s} \)
 - \(D-\alpha \text{ fluctuations: } v_{\text{radial}} \times (\delta n_e/n_e) \sim 70-100 \text{ m/s} \)
 - \(\text{BES: } v_{\text{radial}} \times (\delta n_e/n_e) \sim 150-200 \text{ m/s}. \)
 - \(\text{Langmuir probes: } v_{\text{radial}} \times (\delta n_e/n_e) \sim 100 \text{ m/s}. \)
 - \(\text{Particle balance.} \)
- Suggests strong de-coupling from transport barrier near separatrix.
Dimensionless SOL comparison also shows consistent $v_{\text{eff}} \sim 100$ m/s between DIII-D and compact high-field Alcator C-Mod.

- Flux density analysis based on measured, time-averaged ionizations in SOL, particle balance and I_{wall}.
Energy and particle balance model of filament indicate consistent behavior with experiments

- Measured radial propagation velocities imposed.

- \(n_f(r) \): competition between volumetric ionization sources within the filament (~\(n_f n_D S_{ion} \)) and parallel “sonic” particle losses out the ends of the filament (~\(n_f c_s / L \))

Energy Balance

\[
Q_{\parallel, cond} = \kappa_o T_{f, \parallel}^{-5/2} \nabla T_{\parallel} A_{\parallel} \sim \kappa_o T_f^{-5/2} \left(\frac{T_f - T_{div}}{L_{\parallel}} \right) r_f^2
\]

\[
Q_{ion} = n_f n_D S_{ion} (T_e) kE_{ion} V_f \sim n_f n_D S_{ion} (T_e) kE_{ion} r_f^2 L_{\parallel}
\]
Energy and particle balance model of filament indicate consistent behavior with experiments.
Understanding filaments in the context of ionization sources shows us that they create a fuelling loop that competes with the divertor.

- Filaments bring plasma to main-wall that must recycle.
- Ionizations occur near window-frames: i.e. filaments must extend along LFS poloidal side.
- Loop 2 is difficult to measure but…
 - Divertor flux amplification ~5-10.
 - $I_{\text{drain}} \sim I_{\text{wall}}$ at $3.5 \times 10^{19} \text{ m}^{-3}$.
Understanding filaments in the context of ionization sources also informs us about the validity of particle transport diagnosis.

- Cross-field flux density from probe (ExB) strongly diverges from flux balance and D-α diagnosis near separatrix…causes?
 1. Probe body induces transport (LaBombard) also violates global power balance.
 2. Comparison of auto-power spectra and radial/poloidal propagation (BES vs. D-α) suggest SOL transport is split into two distinct regions
 - **Near SOL**: high frequency (missed by D-α) with \(v_{\text{poloidal}} \sim v_{\text{diamag}} \)
 - **Far SOL**: low frequency (0.1-10 kHz) with \(v_{\text{poloidal}} \sim 0 \) and \(v_{\text{radial}} \sim 300-500 \text{ m/s} \).
Self-fuelling “density” limit induced by SOL with convective transport

- “Know” $v_{\text{eff}} \sim 50$ m/s.
- “Fit” $\tau_p \sim 75$ ms $\sim \tau_E$ for data.

- Insight: SOL opacity + convective transport prohibits raising density.
- Result:
 - Max. allowed $n_{e,\text{core}} \sim 6.5 \times 10^{19}$ m$^{-3}$
Turbulent plasma transport to the wall can also control core impurity levels

- Carbon source \(\propto \Gamma_i \)
 - Carbon erosion has weak energy dependence due to chemical sputtering.

- Methane trace experiments show relative penetration of methane to core:
 \[P_{\text{wall}} \geq 10 \times P_{\text{div}} \]
 \[(I_{\text{wall}}/I_{\text{div}}) \times (P_{\text{wall}}/P_{\text{div}}) > 1 \]
 \[\therefore \text{main-wall carbon source dominate at all densities.} \]

- Confirmed with wall-gap scans.

Upper baffle knee gap scan

- Core plasma
- Incident ion flux (s^{-1} m^{-2})
- Brightness (ph s^{-1} m^{-2} sr^{-1})
- Fraction carbon \(f_{\text{carbon}} \)

\(n/n_{\text{Greenwald}} \): 0.25, 0.35, 0.45, 0.55

UW Plasma Seminar, Feb. 2004 Whyte
Turbulent plasma transport to the wall can also control divertor deposition & T retention
This should be the beginning of a better predictive design capability for edge & divertor in burning plasmas.

- Window-pane geometry & convective transport ansatz can be easily included in existing 2-D fluid codes.
 - Optimize wall-plasma gaps.
 - Control impurity erosion and T retention.
 - Plasma operation near density limit.

- Use time-dependent codes to understand dynamical impact of intermittent density bursts interacting with wall.
 - Impurity and fuel recycling.
 - Effect of transient events like ELMS.

- Use combination of local and global fluctuation diagnosis to obtain better fundamental understanding on cause and effects of edge turbulence.